
tru seal

Notes: 1. Simulations were performed by Enermodal Engineering Limited using THERM 5.2

- 2. Klin = U_{total} x Height of spacer, U in W/m²-K, Height in m.
- 3. The outside boundary condition is T = -18 $^{\circ}$ C, H_c = 9994.0 W/m²-K
- 4. The inside boundary condition is T = 21 $^{\circ}$ C, H_c = 9994.0 W/m²-K
- 5. All spacers were modeled at .500" air space.
- 6. DuraSeal 2.03 was modeled using a conductivity of .231 W/m-K for their butyl bulk material.

Duralite [™] is 96%

Less Conductive than conventional Aluminum Box Spacers

Duralite ™ 88%
Less Conductive than Intercept®

Duralite[™] 56%
Less Conductive than
Super Spacer®